
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Utilizing Greedy and String Matching Algorithm for a
Song Recommendation System

Angelica Kierra Ninta Gurning - 13522048
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13522048@std.stei.itb.ac.id

Abstract—As a crucial component of contemporary music
streaming platforms, song recommendation algorithms have
completely changed how consumers enjoy music. These
systems use advanced algorithms to examine patterns and user
preferences to tailor a personalized music recommendation.

Keywords—pattern; string; recommendation; music;

I. INTRODUCTION
Song recommendation systems have revolutionized the

way users discover and enjoy music, becoming an essential
feature of modern music streaming platforms. These
systems leverage sophisticated algorithms to analyze user
preferences, listening habits, and musical attributes,
providing personalized music recommendations that align
with individual tastes. The primary goal is to enhance user
experience by delivering relevant and engaging song
suggestions, thereby increasing user satisfaction and
platform engagement.

Typically, a song recommendation system compiles
information about a user's listening preferences, including
genres, artists, and individual songs. Traditional
recommendation systems use techniques such as
collaborative filtering, content-based filtering, and hybrid
approaches. Collaborative filtering makes recommendations
based on user similarity and behavior patterns, while
content-based filtering focuses on the music's
characteristics, such as genre, tempo, and instrumentation.
Hybrid approaches combine these methods to enhance
accuracy and mitigate the limitations of each technique.

This paper aims to improve song recommendation
systems by incorporating greedy algorithms and string-
matching algorithms. Greedy algorithms are effective for
optimization problems, making them ideal for selecting the
best recommendations based on criteria like the number of
streams, chart positions, and playlist inclusions. String
matching algorithms are essential for accurately identifying
and comparing patterns within textual data.

This combined approach enhances the accuracy of
recommendations by considering multiple aspects of user
preferences and song attributes while also improving
computational efficiency, allowing for real-time
suggestions.

II. THEORY

A. Song Recommendation Systems
A song recommendation system is an advanced software

application designed to suggest music to users based on
their listening preferences, behaviors, and patterns. These
systems leverage various algorithms and techniques,
including collaborative filtering (both user-based and item-
based), which recommends songs based on the preferences
of similar users or the similarities between songs,
respectively. Content-based filtering analyzes the attributes
of the music itself, such as genre, tempo, key, artist, and
lyrics, to recommend songs with similar characteristics to
those the user has liked. Hybrid systems combine
collaborative and content-based filtering to enhance
accuracy and address limitations like the cold-start problem.
Additionally, knowledge-based systems use explicit user
information and domain knowledge, such as mood or
activity, to provide relevant music suggestions. These
theoretical foundations collectively enable song
recommendation systems to deliver personalized and
engaging music experiences.

In this specific implementation, greedy and string
matching algorithm will be used.

B. Greedy Algorithm
The greedy algorithm is one of the most popular

algorithms used for optimization problems. Commonly, there
are two optimization problems , maximation and
minimization. For this particular experiment, maximation
will be utilized.

The Greedy algorithm is a method that solves problems
step-by-step. At each step, the greedy algorithm strives to
make the best possible choice from all available options at
that moment, without considering future steps. The algorithm
chooses a local optimum, with the hope of it leading to the
global optimum. To achieve an optimal solution, it is crucial
to choose the right selection function. To solve a problem
with the greedy algorithm, the problem needs to be broken
down into several elements to facilitate implementation. The
elements of the greedy algorithm are:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

1. Candidate Set (C)

The set of all possible choices or options at each step.

2. Solution Set (S)

The set of choices selected so far.

3. Selection Function

 A function that chooses the best candidate from the
candidate set.

4. Feasibility Function

A function that checks if a candidate can be added to the
solution set without violating constraints.

5. Objective Function

A function that measures the quality of the current solution.

6. Solution Function

A function that indicates when a complete solution has
been found.

C. String
A string represents a series of characters, encompassing

letters, numbers, punctuation marks, and various symbols.
Typically, it is an array of characters that stores a specific
sequence of character elements with an assigned encoding.
String can be decomposed into a prefix and a suffix.

Prefix is a substring of the string S, starting from the
initial character up to the i-th character, where i ranges from
0 to the length of the string minus 1. Whereas, Suffix is a a
substring of the string S, beginning from the i-th character
and extending to the final character, where i ranges from 0
to the length of the string minus 1. For example, considering
the string S, which represents the name "Stima", the
following are its possible prefixes and suffixes:

1. All possible prefixes of S: "S", "St", "Sti", "Stim",
"Stima"

2. All possible suffixes of S: "a", "ma", "ima", "tima",
"Stima"

D. Brute Force String Matching Algorithm
The brute force approach stands is one of the most

elementary methods for string matching. Its methodology
involves comparing the given pattern against every possible
substring of the text, meticulously checking for occurrences
that align with the pattern. This exhaustive process
continues until a match is successfully identified or until all
substrings have been scrutinized. Despite its simplicity, the
brute force algorithm is characterized by its huge
computational complexity. String matching using the brute
force algorithm has a complexity that depends on the cases
encountered. The complexity analysis of brute force is as
follows.

1. Best Case
Number of comparisons: At most n times.
Example:

Text (T): aaaaazzz

Pattern (P): zzz
In the best-case scenario, the brute force algorithm only

needs to make a single comparison for each position in the
text, leading to a complexity of O(n). This happens when
the first character of the pattern does not match any of the
characters in the text being compared. For instance, if the
text is "String ini berakhir dengan zzz" and the pattern is
"zzz", the algorithm will quickly skip to the end of the text
as soon as it identifies that the initial characters do not
match, making the process efficient and resulting in at most
n comparisons.

2. Average Case

Example:
Text (T): a string searching example is standard
Pattern (P): store

In the average case, the brute force algorithm performs
string matching operations with a complexity of O(m + n),
where m is the length of the pattern and n is the length of
the text. This performance is generally quite efficient for
typical text searches. For example, if the text is "a string
searching example is standard" and the pattern is "store", the
algorithm will compare the pattern to each substring in the
text until a match is found or the text is exhausted. Due to
the diverse nature of characters and patterns in ordinary text,
the average case tends to involve fewer comparisons and
operates quickly.

3. Worst Case

Number of comparisons: m(n – m + 1) = O(mn)
Example:

Text (T): aaaaaaaaaaaaaaaaaaaaaaaaaah
Pattern (P): aaah

In the worst-case scenario, the brute force algorithm
must compare each character of the pattern with each
possible starting position in the text. This results in a large
number of comparisons, particularly when the text contains
many repeated characters and the pattern is found only at
the end. For instance, if the text is
"aaaaaaaaaaaaaaaaaaaaaaaaaah" and the pattern is "aaah",
the algorithm will perform many redundant comparisons
due to the repeated 'a' character, leading to a time
complexity of O(mn).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

E. Knuth-Morris-Pratt String Matching Algorithm

Figure 1. KMP Scheme

(https://dev-faqs.blogspot.com/2010/05/knuth-morris-pratt-
algorithm.html)

KMP Algorithm was developed by Donald E. Knuth,

James H. Morris, and Vaughan R. Pratt. This algorithm
works by skipping unnecessary string comparisons to avoid
the high complexity of comparisons. It is a modification of
the brute force search algorithm. The KMP algorithm has a
complexity of O(m + n), with O(m) for calculating the
border function and O(n) for the string search process. KMP
uses information from the pattern being searched to avoid
redundant searches.

This algorithm is divided into two stages: Preprocessing
(creating the LPS array) and Searching (searching for the
pattern using the LPS array). Here are the steps for string
matching using the KMP algorithm:

1. Preprocessing (Creating the LPS Array)
LPS is an array that contains a prefix which is also a

suffix for certain sub-patterns. For example, consider the
pattern "ABCDABC":

Prefixes: A, AB, ABC, ABCD, ABCDA, ABCDB,
ABCDABC
Suffixes: C, BC, ABC, DABC, CDABC, BCDABC
Prefix = Suffix: ABC

Steps to create the LPS array are as follows:
1. Initialize lps[0] = 0, and two variables, i = 1 and

length = 0.
2. Iterate through the pattern from the second position

to the end.
3. If pattern[i] == pattern[length], increment length

and set lps[i] = length, then increment i.
4. If pattern[i] != pattern[length]:

a. If length != 0, set length = lps[length - 1]
(do not change i).

b. If length == 0, set lps[i] = 0 and increment
i.

Example LPS Array:
String: ABABD

1. LPS[0] = 0, char: A
2. LPS[1] = 0, A does not match B

3. LPS[2] = 1, A matches A
4. LPS[3] = 2, B matches B
5. LPS[4] = 0, D does not match A
Resulting LPS = [0, 0, 1, 2, 0]

2. Searching Using LPS Array
Steps:

1. Iterate through the text with two variables, i (for
the text) and j (for the pattern).

2. If pattern[j] == text[i], increment both i and j.
3. If j equals the length of the pattern, the pattern is

found. Record the starting index position at i - j,
then set j = lps[j - 1].

4. If pattern[j] != text[i] and j != 0, set j = lps[j - 1]
without changing i.

5. If pattern[j] != text[i] and j == 0, increment i.

F. Boyer Moore Strting Matching Algorithm
The Boyer-Moore algorithm uses two techniques: the

looking-glass technique and the character-jump technique.
The looking-glass technique involves searching for the
pattern (P) within the text (T) by starting from the end of the
pattern. The character-jump technique is applied when there
is a mismatch: if T[i] == x, then P[j] does not match T[i].
There are three cases to determine how far the pattern (P)
should be shifted when a mismatch occurs. These cases are
as follows:

1. If P contains x somewhere, then try shifting P to the
right to align the last occurrence of x in P with T[i].

When there is a mismatch between character T[i] in the
text and P[j] in the pattern, we look for the last occurrence
of character T[i] in the pattern before position j.

Action: Shift the pattern to the right so that character

T[i] in the text aligns with its last occurrence in the pattern.

Figure 2. BM Scheme Case 1

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf)

2. If P contains x somewhere, but shifting to the last

occurrence is not possible, then shift P to the right
by 1 character to T[i+1]

If the shift to align the last occurrence of the mismatched
character is not possible (e.g., due to an out-of-bounds
position in the pattern or the character not being found),
shift the pattern to the right by one character.

Action: Shift the pattern to the right by one position

https://dev-faqs.blogspot.com/2010/05/knuth-morris-pratt-algorithm.html
https://dev-faqs.blogspot.com/2010/05/knuth-morris-pratt-algorithm.html
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 3. BM Scheme Case 2

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf)

3. If cases 1 and 2 do not apply, then shift P to align
P[0] with T[i+1].

If there is no last occurrence of the mismatched
character in the pattern and shifting one character does not
resolve the mismatch, shift the pattern so that the beginning
of the pattern aligns with the next character in the text.

Action: Shift the pattern to the right so that P[0] aligns

with T[i+1]

Figure 4. BM Scheme Case 3

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf)

G. Levenshtein Distance
Levenshtein Distance is a technique used to measure the

difference between two strings. It calculates the minimum
number of operations required to transform one string into
the other. The higher the Levenshtein Distance value, the
more different the two strings are. The three operations
involved in calculating Levenshtein Distance are:

1. Substitution (Replace)
2. Deletion (Delete)
3. Insertion (Insert)

Figure 5. Levenshtein Matrix

(https://www.researchgate.net/figure/Damerau-Levenshtein-
DL-distance-matrix_fig1_261457361)

Levenshtein Distance is calculated using a matrix that

corresponds to the lengths of the strings being compared.
Here are the steps to fill the Levenshtein matrix

1. Initialization
For each cell (i, j) in the matrix, where i ranges from 1 to

m (length of the first string) and j ranges from 1 to n (length
of the second string), the following steps are performed:

a. Match Check
If the i-th character of the first string matches the j-th

character of the second string, then the value of cell (i, j) is
set to the value of cell (i-1, j-1). This indicates that no
operation is needed to align the matching characters.

b. Mismatch Handling
If the i-th character of the first string does not match the

j-th character of the second string, then the value of cell (i, j)
is set to the minimum of the following three values, each
corresponding to one of the possible operations:

a. Replace: The value of cell (i-1, j-1) plus one.
b. Delete: The value of cell (i-1, j) plus one.
c. Insert: The value of cell (i, j-1) plus one.

2. Output
The value in the bottom-right corner of the matrix (cell

(m, n)) represents the Levenshtein Distance between the two
strings. This value is the minimum number of operations
needed to transform one string into the other.

III. IMPLEMENTATION

A. Problem Decomposition
To implement the recommendation system, two

databases will be used, one as the main database for songs
and the other for the user’s playlist. The following are the
table headers for both csv data used.

Song Database

Table Head Description

track_name Song title

artist(s)_name List of contributing artists

released_year Release year of a song

released_month Release month of a song

in_spotify_playlists Number of occurences in a
spotify playlist

in_spotify_charts Number of occurences in a
spotify chart

streams Number of total streams

key Musical key of the song

bpm Beats per Minute

https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://www.researchgate.net/figure/Damerau-Levenshtein-DL-distance-matrix_fig1_261457361
https://www.researchgate.net/figure/Damerau-Levenshtein-DL-distance-matrix_fig1_261457361

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

User Playlist

Table Head Description

track_name Song title

artist(s)_name List of contributing artists

key Musical key of the song

bpm Beats per Minute

lyrics Lyrics of the song

num_streamed Number of streamed

For a more comprehensive view of the data, click here

The data will be stored using a dictionary structure, with
a total of nine dictionaries. Each dictionary will represent
either a chosen greedy strategy or contain the text and pattern
to be matched.

Music similarity will be searched based on two main
categories: the user's top artist in their playlist and the user's
most streamed song in their playlist. The artist will be
matched with songs in the database.

If the search is based on the user’s top artist, the top artist
will act as the pattern and the artist(s) will act as the text.
Three algorithms will be used: the Brute Force algorithm, the
KMP algorithm, and the BM algorithm. String matching is
necessary because a song can have multiple artists listed as
one long string. If the pattern matches, the user will be
allowed to choose which greedy strategy to implement. The
four strategies are:

1. Greedy by number of streams

2. Greedy by number of times featured in charts

3. Greedy by number of times featured in playlists

4. Greedy based on the latest release

 If the search is based on the user’s most streamed song,
the pattern will be a concatenation of the song's key and
BPM. If an exact match cannot be found, the pattern will
include lyrics as well. In addition to the four greedy
algorithms mentioned above, there will be a fifth strategy

5. Greedy based on the user’s preferred artist

B. Greedy Implementation
In a song recommendation system, there are several

aspects by which the recommendations are categorized. To
implement these aspects using greedy algorithms, the
categories must be quantifiable. Here are the 5 categories:

1. Greedy by number of streams

Number of streams is a tangible measurement to imply a
suitable recommendation. The number of streams indicates
that other users have listened to the recommended song as

well. As the number of streams increases, more users have
listened to the recommended song.

4. Greedy by number of times featured in chart

Number of times featured in chart indicates that the
recommended song is popular amongst other users. The
more frequently a song appears in charts, the more likely it is
that the song resonates with a broad audience. This
popularity can serve as a reliable indicator for recommending
the song to users.

5. Greedy by number of times featured in playlist

The number of times featured in playlists indicates that
users find the song enjoyable enough to include it in their
personal or shared playlists. This metric shows the song's
appeal and relevance in various contexts, making it a
valuable recommendation

6. Greedy by release date

Using the release date as a criterion, newer songs can be
recommended to users who prefer staying updated with the
latest music. Conversely, older songs can be recommended
to those who enjoy classic or nostalgic tracks. This approach
ensures that recommendations are timely and aligned with
the user’s listening habits.

7. Greedy based on the user’s preffered artist

Recommending songs by the user's preferred artist
increases the likelihood that the user will enjoy the
recommendation. By prioritizing songs from artists the user
has previously shown interest in, the system can tailor its
suggestions more accurately to the user’s tastes.

Once all the strategies are decided upon, the selected
pattern will be matched against the corresponding text using
the designated string-matching algorithms. To further
implement using Greedy algortihm, it willl be mapped into
optimization functions:

1. Candidate Set (C)

The candidate set includes all songs in the database that
matches the initial criteria, either th e user’s top artisy or
most streamed song

2. Solution Set (S)

The solution set is the list of songs that have been chosen
from the candidate set according to the greedy strategy
applied.

3. Solution Function

The solution function checks if the selected songs in the
solution set meet the desired criteria for a good
recommendation

4. Selection Function

The selection function chooses the next best song to add
to the recommendation list based on one of the greedy
strategies, such as the number of streams, chart appearances,
playlist inclusions, release date, or user’s preferred artist

https://drive.google.com/drive/folders/1QiYy8vvTCjQg_KEbj6fEEapWFqdKT6Oc?usp=sharing

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

5. Feasibility Function

This function checks whether adding a particular song to
the recommendation list will still produce a valid solution.

6. Objective Function

 The objective function evaluates how well the current set
of recommended songs meets the overall goal of the
recommendation system

C. Pattern Matching Algorithm Implementation
Three Algoritms will be used and compared to for this
experiment. Below is an example of the pattern and text that
will be used for comparison

1. Based on user’s favorite artist

Text Veigh, Bvga Beatz, Supernova Ent, Prod
Malax

Pattern Taylor Swift

2. Based on user’s favorite song

Text A#125Cell individual tonight seat.
Our part public service campaign my
take.Way choose size response read my.
Manager on item in myself make
everything. Look note indeed participant
history.

Pattern A#125

If using Levenshtein Distancee

Pattern B133Fear rate different entire instead
sport traditional. Phone cup we
church.Realize recent heavy main feeling
wonder moment free. Blood hard ten.
Investment tell finish choose admit
citizen.

Here are the implementations for string matching algortihm:
1. Bruteforce Algorithm

class BruteForce:
 @staticmethod
 def match(text, pattern):
 n = len(text)
 m = len(pattern)
 for i in range(n - m + 1):
 match = True
 for j in range(m):
 if text[i + j] !=
pattern[j]:
 match = False
 break
 if match:
 return i
 return -1

2. Knuth-Morris-Pratt Algorithm

class KMP:

 @staticmethod
 def match(text, pattern):
 n = len(text)
 m = len(pattern)
 b = KMP.compute_border(pattern)
 i = 0
 j = 0

 while i < n:
 if pattern[j] == text[i]:
 if j == m - 1:
 return i - m + 1 #
match

 i += 1
 j += 1
 elif j > 0:
 j = b[j - 1]
 else:
 i += 1

 return -1 # no match

3. Boyer Moore Algorithm

class BM:
 @staticmethod
 def match(text, pattern):
 last = BM.build_last(pattern)
 n = len(text)
 m = len(pattern)
 i = m - 1

 if i > n - 1:
 return -1

 j = m - 1

 while i <= n - 1:
 if pattern[j] == text[i]:
 if j == 0:
 return i
 else:
 i -= 1
 j -= 1
 else:
 lo = last[ord(text[i])]
if ord(text[i]) in last else -1
 i = i + m - min(j, 1 +
lo)
 j = m - 1

 return -1

4. Levenshtein Distance

class LevenshteinDistance:
 @staticmethod
 def compute(s1, s2):

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 d = [[0] * (len(s2) + 1) for _
in range(len(s1) + 1)]

 for i in range(len(s1) + 1):
 d[i][0] = i

 for j in range(len(s2) + 1):
 d[0][j] = j

 for i in range(1, len(s1) + 1):
 for j in range(1, len(s2) +
1):
 cost = 0 if s1[i - 1] ==
s2[j - 1] else 1

 d[i][j] = min(
 d[i - 1][j] + 1,
 d[i][j - 1] + 1,
 d[i - 1][j - 1] +
cost
)

 max_len = max(len(s1), len(s2))
 similarity = 1 -
(d[len(s1)][len(s2)] / max_len)

 return similarity * 100

IV. EXPERIMENT

A. Resultt
The implementation will be using python, and testing all
three string matching algorithms as well as levenshtein
distance.

1. Based on user’s favorite artist
a. Brutefore, Greedy by Number of Streams

Figure 6.Test Case 1

b. KMP, Greedy By Number of Streams

Figure 7.Test Case 2

c. BM. Greedy By Number of Streams

Figure 8.Test Case 3

d. Bruteforce, Greedy By Number of Times

Featured in Chart

Figure 9.Test Case 4

e. KMP, Greedy By Number of Times Featured

in Playlist

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure `10.Test Case 5

f. BM, Based on Release Date

Figure `11.Test Case 6

2. Based on user’s favorite song

When conducting the experiment, it was found that

there were no exact match for the pattern. Therefore all of
the results were presented using Levensthein Distance

a. Levenshtein, Greedy By Number of Streams

Figure `12.Test Case 7

b. Levenshtein, Greedy By Number of Times

Featured in Chart

Figure `13.Test Case 8

c. Levenshtein, Greedy By Number of Times

Featured in Playlist

Figure `14.Test Case 9

d. Levenshtein, Based on Release Date

Figure `15.Test Case 10

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

e. Levensthein, Greedy by User’s Preffered
Artist

Figure `16.Test Case 11

B. Analysis
The result above will be mapped into a table for better

comprehension.

To compare between the three pattern matching

algorithms, recommendation data based on the user’s
favorite artist and greedy by number of streams will be used.

BruteForce KMP BM

17923.69 ms 1242.74 ms 1181.90 ms

Based on the execution time it can be inferred that the

Brute Force algorithm is the simplest and most
straightforward pattern matching algorithm. It checks each
possible position in the text to find a match for the pattern.
The KMP algorithm improves the efficiency of pattern
matching by preprocessing the pattern to determine where
mismatches can lead to, thus avoiding unnecessary
comparisons. The Boyer-Moore algorithm is one of the
most efficient pattern matching algorithms, using heuristics
to skip sections of the text, thus reducing the number of
comparisons needed. For this experiment involving the
user's favorite artist and the "greedy by number of streams"
strategy, the BM algorithm is the most efficient choice,
followed by KMP, and finally the Brute Force algorithm.

Moreover, when comparing the results to those obtained
using the Levenshtein Distance algorithm, it becomes
evident that the Levenshtein Distance falls behind both the
KMP and BM algorithms in terms of efficiency and speed.
The Levenshtein Distance algorithm, which calculates the
minimum number of single-character edits (insertions,
deletions, or substitutions) required to change one word into
another, is computationally intensive. This increased
computational complexity results in longer execution times,
making it less suitable for large datasets or real-time
applications compared to KMP and BM.

The greedy algorithm also proves to be working as seen
on the different recommendation given based on the greedy
strategy. To illustrate the results will be mapped into a table

Based on user’s favorite artist

Greedy by number of
streams

Blank Space – Taylor
Swift

Greedy by number of times
feautred in chart

Anti Hero – Taylor Swift

Greedy by number of times
feautred in playlist

Shake It Off – Taylor
Swift

Based on the latest release Enchanted (Taylor’s
Version) – Taylor Swift

Based on user’s favorite song

Greedy by number of
streams

Starboy – The Weeknd,
Daft Punk

Greedy by number of times
feautred in chart

Seven (feat. Latto) –
Jungkook, Latoo

Greedy by number of times
feautred in playlist

Smells Like Teen Spirit –
Remastered 2021 -

Nirvana

Based on the latest release Seven (feat. Latto) –
Jungkook, Latoo

Greedy by user’s preffered
artist

Style – Taylor Swift

The table demonstrates the effectiveness of the greedy
algorithm in generating relevant song recommendations
based on different strategies. Each strategy focuses on a
specific aspect, streams, chart features, playlist inclusions,
latest releases, or user preferences, allowing for tailored
recommendations that align with the user's listening habits
and preferences. By using the greedy algorithm, the
recommendation system can dynamically adapt to various
criteria, ensuring that the user receives the most suitable and
engaging music suggestions.

V. CONCLUSION
The comparison of pattern matching algorithms reveals

significant difference in performance. The Bruteforce
algorithm, is the simplest , but unfortunately thw slowest to
complete the task. The KMP algorithm improves efficiency
by preprocessing the pattern, reducing the execution time.
The BM Algorithm use heuristic to skip certain sections of
the text. Levenshtein Distance algorithm, which calculates
the minimum number of single-character edits, is
computationally intensive and slower, making it less
suitable for large datasets or real-time applications
compared to KMP and BM.

The greedy algorithm proves effective in generating
relevant song recommendations based on different criteria,
tailored to the user’s preferences. For instance, based on the
user's favorite artist, different Taylor Swift songs are
recommended depending on the strategy,such as "Blank
Space" for the number of streams and "Enchanted (Taylor’s

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Version)" for the latest release. Similarly, based on the
user’s favorite song, recommendations include "Starboy" by
The Weeknd for its high number of streams and "Seven
(feat. Latto)" by Jungkook for its chart appearances and
latest release status. The combination of efficient pattern
matching algorithms and well-defined greedy strategies
enhances the recommendation system's capability for
delivering personalized music recommendations.

VIDEO LINK AT YOUTUBE
Demonstration video can be accessed at:
https://youtu.be/1HKpqBuFuDY

ACKNOWLEDGMENT
Before everything, the researcher would like to

thank the Lord for His Grace and kindness. The researcher
would also like to express the biggest gratitude for Dr. Nur
Ulfa Maulidevi, S.T, M.Sc., for acting as the researcher’s
Strategy for Algorithm and for sharing the knowledge and
guidance which led into helping the researcher to write this
essay.

Not to mention, to other Strategy for Algorithm
lecturers who also have contributed to sharing their
knowledge. Finally, the researcher would give thanks to her
fellow peers for giving support and confidence in finishing
this essay
.

REFERENCES
[1] Munir, Rinaldi. 2024. Algoritma Greedy (Bagian 1).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Greedy-(2021)-Bag1.pdf Accessed 11 June 2024

[2] Munir, Rinaldi. 2024. Pencocokan String.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf Accessed 11 June 2024

[3] Nam,Ethan.2019. Understanding the Levenshtein Distance Equation
for Beginners. Accessed 12 June 2024
https://medium.com/@ethannam/understanding-the-levenshtein-
distance-equation-for-beginners-c4285a5604f0

[4] GeeksforGeeks. 2024. KMP Algorithm for Pattern Searching.
Accessed 12 June 2024. https://www.geeksforgeeks.org/kmp-
algorithm-for-pattern-searching/

[5] GeeksforGeeks. 2024. Boyer-Moore Algorithm for Pattern Searching.
Accessed 12 June 2024. https://www.geeksforgeeks.org/boyer-
moore-algorithm-for-pattern-searching/

[6] Khant,Situ. 2023. https://medium.com/artificialis/music-
recommendation-system-with-scikit-learn-30f4d07c60b3. Accesed 12
June 2024.

. PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan da0ri makalah orang lain, dan bukan plagiasi

Bandung, 12 Juni 2024

Angelica Kierra Ninta Gurning/13522048

https://youtu.be/1HKpqBuFuDY
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://medium.com/@ethannam/understanding-the-levenshtein-distance-equation-for-beginners-c4285a5604f0
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://medium.com/artificialis/music-recommendation-system-with-scikit-learn-30f4d07c60b3
https://medium.com/artificialis/music-recommendation-system-with-scikit-learn-30f4d07c60b3

	I. Introduction
	II. Theory
	A. Song Recommendation Systems
	B. Greedy Algorithm
	C. String
	D. Brute Force String Matching Algorithm
	E. Knuth-Morris-Pratt String Matching Algorithm
	F. Boyer Moore Strting Matching Algorithm
	G. Levenshtein Distance

	III. Implementation
	A. Problem Decomposition
	B. Greedy Implementation
	C. Pattern Matching Algorithm Implementation

	IV. Experiment
	A. Resultt
	B. Analysis

	V. Conclusion
	Video Link at Youtube
	Acknowledgment
	References

